Chip-Firing Games with Dirichlet Eigenvalues and Discrete Green’s Functions
نویسنده
چکیده
OF THE DISSERTATION Chip-Firing Games with Dirichlet Eigenvalues and Discrete Green’s Functions
منابع مشابه
Discrete Green’s functions for products of regular graphs
Discrete Green’s functions are the inverses or pseudo-inverses of combinatorial Laplacians. We present compact formulas for discrete Green’s functions, in terms of the eigensystems of corresponding Laplacians, for products of regular graphs with or without boundary. Explicit formulas are derived for the cycle, torus, and 3-dimensional torus, as is an inductive formula for the t-dimensional toru...
متن کاملDiscrete Green ’ s functions ∗
We study discrete Green’s functions and their relationship with discrete Laplace equations. Several methods for deriving Green’s functions are discussed. Green’s functions can be used to deal with diffusion-type problems on graphs, such as chip-firing, load balancing and discrete Markov chains.
متن کاملDiscrete Green's Functions
We study discrete Green’s functions and their relationship with discrete Laplace equations. Several methods for deriving Green’s functions are discussed. Green’s functions can be used to deal with diffusion-type problems on graphs, such as chip-firing, load balancing and discrete Markov chains.
متن کاملA chip-firing game and Dirichlet eigenvalues
We consider a variation of the chip-firing game in an induced subgraph S of a graph G. Starting from a given chip configuration, if a vertex v has at least as many chips as its degree, we can fire v by sending one chip along each edge from v to its neighbors. Chips are removed at the boundary δS. The game continues until no vertex can be fired. We will give an upper bound, in terms of Dirichlet...
متن کاملA chip-firing game and Dirichlet eigenvalues
We consider a variation of the chip-firing game in a induced subgraph S of a graph G. Starting from a given chip configuration, if a vertex v has at least as many chips as its degree, we can fire v by sending one chip along each edge from v to its neighbors. The game continues until no vertex can be fired. We will give an upper bound, in terms of Dirichlet eigenvalues, for the number of firings...
متن کامل