Chip-Firing Games with Dirichlet Eigenvalues and Discrete Green’s Functions

نویسنده

  • Robert B. Ellis
چکیده

OF THE DISSERTATION Chip-Firing Games with Dirichlet Eigenvalues and Discrete Green’s Functions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Green’s functions for products of regular graphs

Discrete Green’s functions are the inverses or pseudo-inverses of combinatorial Laplacians. We present compact formulas for discrete Green’s functions, in terms of the eigensystems of corresponding Laplacians, for products of regular graphs with or without boundary. Explicit formulas are derived for the cycle, torus, and 3-dimensional torus, as is an inductive formula for the t-dimensional toru...

متن کامل

Discrete Green ’ s functions ∗

We study discrete Green’s functions and their relationship with discrete Laplace equations. Several methods for deriving Green’s functions are discussed. Green’s functions can be used to deal with diffusion-type problems on graphs, such as chip-firing, load balancing and discrete Markov chains.

متن کامل

Discrete Green's Functions

We study discrete Green’s functions and their relationship with discrete Laplace equations. Several methods for deriving Green’s functions are discussed. Green’s functions can be used to deal with diffusion-type problems on graphs, such as chip-firing, load balancing and discrete Markov chains.

متن کامل

A chip-firing game and Dirichlet eigenvalues

We consider a variation of the chip-firing game in an induced subgraph S of a graph G. Starting from a given chip configuration, if a vertex v has at least as many chips as its degree, we can fire v by sending one chip along each edge from v to its neighbors. Chips are removed at the boundary δS. The game continues until no vertex can be fired. We will give an upper bound, in terms of Dirichlet...

متن کامل

A chip-firing game and Dirichlet eigenvalues

We consider a variation of the chip-firing game in a induced subgraph S of a graph G. Starting from a given chip configuration, if a vertex v has at least as many chips as its degree, we can fire v by sending one chip along each edge from v to its neighbors. The game continues until no vertex can be fired. We will give an upper bound, in terms of Dirichlet eigenvalues, for the number of firings...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002